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ABSTRACT

This paper introduces methods tailored especially for problems
\ whose solution behaves like ekx, where ) is complex. The shallow
water equations with topography admit such solution.
This paper complements the results of Pratt and others on

exponential-fitted methods and those of Gautschi, Neta, van der

Houwen and others on trigonometrically-fitted methods.

1. Introduction

In this paper we consider linear multistep methods
X k

io & ¥n+1-2 T h ‘iO bif(xn+l-;’yn+l-;)’ k2 l,omnz k-l (1)

for integrating the initial value problem
viix) = £(x,y(x)), y(xo) =Yg - (2)
This linear multistep method is characterized by the polvnomials

k k
A -3 A k-

(zy = azgk *, () = ) b, . (3)

§=0 =0 ’

The main assumption of this paper is that it is a priori known

that the solution is approximately of the form

0

L
r:‘ i} . t .w;“.::;

V0 g e ) (4)
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where Aj = wj + iwj, and the frequencies wj are in a given interval

[wﬁ,wu].
The special case where Aj = jwo with W given was considered

first by Gautschi [8]. His approach was the following. Let:

) ~ zc(e?) (5)

then the local truncation error of (1) is given by Lambert [11]

T

. d
= :(h g vig) .

n+k

Insertinag (4) in (6) vields

The coefficients bi are chosen in such a way that
:(ihj‘h‘o) = O ’ j = OIlIOO'Iq ’ (8)

for the largest value of g possible. g is then called the trigo-
nometric order of the method. Gautschi has chosen a; such that the
methods are of Adams and Stormer type. However, these methods are
sensitive. to changes in the freguency wg. Neta and Ford [13]
developed Nystrom and generalized Milne-Simpson type methods. These
methods showed less sensitivity to perturbation in W but require
the eigenvalues of the Jacobian to be purely imaaginary. Neta [14]
has developed families of backward differentiation methods that

overcome the above-mentioned restriction. Salzer [17] has developed

)
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predictor-corrector methods based on trigonometric polynomials.

See also Steifel and Bettis [18] and Bettis [3]. Van der Houwen

. . and Sommeijer [10] have developed an alternative approach. The
et ‘V‘
.Q.‘.' .
pﬁh: conditions (8) were replaced by
:;’:Q:Q
e
¢(0) =0,
;‘.“:‘“
M (9)
):_n‘ﬁi:g
%l':?“
":tf':l .
Y sam 3y =0, 3=1,2,...,q,
.i:Qy"‘.
:\“!} (]) . . . :
t@& where the ) are appropriately chosen points in the interval
.",:\’,
iﬁj [wﬁ,wu].

An advantage of this so-called minimax aprrocach over the fittinc

avrroach is the increased accuracy in cases where no accurate esti-

*e'¢ mate of W is available or when the freguency is varyinc in time.
Cond The cther special case considered in the literature is where

ok
e . :
y%g %j = i.,. Probadbly the first article on the subject is due to Brock
el
?ﬁf and Murray [5]. They discuss the use of exponential sums ir the
AL Yy 2 S
Ly integration of a svstem of first order ordinary differential egquaticns.
“"l.,"

' A .
,ﬁﬁ Dennis [7] also suggested special methods for problems whose solution
3
n‘.

{M‘ is exponential. He suggested a transformation of variables. More
it recently, Carroll {[6] has developed exponentially fitted one-step
4

é%& methods for the scalar Riccati equation. For the general first
Ath

L) .

gﬁg order system of equations, Pratt [16] suggests methods based on the
W three parameter exponential function

1,7, S

;.::;'

R 2x

RN I(x) = A + Be“" . (10)
-'l..‘h‘
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RN The parameters A, B are given in terms of values of y and f.

S Several possibilities for z are given based on results of Brandon
[2] and Babcock et al. [1}. '
Rt Lvche [12] analyzes multistep methods which exactly integrate
1$; the set {xmewnx}, where w_ is real or imaginary.

g In this article we developed various methods fitting exponentials

*@ﬁ and methods obtained via the minimax approach.

2. Construction of Methods

) 2.1 Fitting Methods

Wy In this subsection we discuss various fitting methods. To this
end, we separate *(ihjx) =0, j =1,2,...,q, into real and imaginary

ﬁ; parts. This yields the following eguations relating the coefficients

b,ed* (57 (51 cos v (k=2)

(@]
)
L
o
-

0§ »=0 :
W
K - Jjv sinjv(k=-2)]

! (11)

sin ju(k-3) - sinjv (k=1)

e -

b,e
A

-
-
]
O

! + jv cosjv(k=-1)]

W where - = w + iy, v = -h,, v = hw, Jj =1,2,...,q.

For exclicit methods, b0 = 0. For Adams type methods ay = 1, a; = -1,

ey e a; = 0 for i = 2,...,k. For lNystrom or generalized Milne-3impson

s methods a, = 1, a, = ~1 and other a, = 0.
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vy k = 1 Implicit

Adams

+
2 2 . '
Y 0 (L™+v7) sin v
. (12)
1‘1"' .
e b = ve = U sinv - v cosv
1 2
(u

-u .
%? b = ve 1 Sinw = v COSV

2 .
+v7) sin v

For v = 0, the coefficients become b, = 1—2*595—3 = b., which agree
ety 0 sin v 1 7
with Gautschi [8] if the coefficients are expanded in Taylor series

" )
%ﬁ with respect to \.
)

ey k = 2 Explicit

. Adams

) (L sin2v - v cos2v)e” + v cosVv - U sinwv
Ry b = > ’
) sin v

[

:.:, (;2+'-.
(13)

_ (v cos. - . sin‘;)ez.~ - ve~

by 2 (;.2+‘.2) sin . .

.
s hvstrom

W b. = (L sin2v - v cos2v)e” + e ’

Jate (u2+v2) sin v
{(14)

: . 2.
4 b = (v cosv = u sinv)e + e .
“;‘ﬂ

Al : (u2+§73 sin

U, .. .
ﬂ% . For % = 0, the coefficients become bl = 2 SIS ’ b2 = 0 which

L agree with Neta [14].
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ety k = 2 Implicit

In this case, one obtains a one-parameter family of (Adams,
generalized Milne-Simpson) methods of trigonometric order 1. The
\Q free parameter can be used to increase the algebraic order of the

ol method as in [13]). )

AN Backward Differentiation

Mﬁ 2u u

N e cos 2v + a,e

1 cos v + a, - bOeZL(u cos2v - v sin2v)
KK

n
o
~

Ay . ‘ ..
ﬁé: ez” sin 2v + aleL sin v - boez“(u sin2v + v cos2v) = 0 , (15)

1 + ay + a =0 .
g}
éﬁ' This system can be solved by MACSYMA (Project MAC's S¥Ymbolic MAnipu-
t ]
lation system written in LISP and used for performing svmbolic as
;% well as numerical mathematical manipulation [4]) or by REDUCE [9].
ﬁs The solution is

ok 2 .
Mt ve‘? - 4 sin2w. -. cos2v

1 3 . . ’
Q.'c -e”" (v cosv + 1 sinv) + L sin2. + v cos2v

o (16)

n . 2L . Lo .
thig! b = -e sin v + e~ sin2v - sin v .

-ezp(v cosv + ¢ sinv) + e"(u sin2v + vy cos2v)

5& For ¢ = 0, the coefficients agree with those given in [14].
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k = 3 Explicit

Again here, one obtains a one-parameter family of methods of

\ trigonometric order 1. In order to get methods of trigonometric
order 2, one has to construct a 3 step implicit method of Adams or

generalized Milne-Simpson type. 1In order to increase the trigo-
nometric order without going to a higher step number, cne can con-

struct linear multistep methods for which the coefficients a. are

£
also functions of |, w. Some examples are given in the next

subsection.

2.2 Generalized Fittina Methods

In this section, we construct some linear mulstistep methods

of the form

Since a. are functions of » one has more free parameters for his

disposal which can be used to obtain higher trigonometric order

methods with relatively lower step number.

k = 2 Implicit

In this case, one has to solve the following linear system of 3

five equations for the parameters 2y, ay, bo, bl’ b2 to obtain a

Py

method of'trigonometric order 2.
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of

fﬁg
:.

-f_"-
"._-"

;I."'s

X5 1 +a +a =0
N

X)) ;

eZu cos2v +aleU cosv +a, -boezb(u cos2v =-v sin2v)
- '
.eIQ‘ iy '
§?4 -b,e" (1 cosv -v sinv) -ib, = 0 ,
be 100 1 2
R
d 2u . o ; .
}gﬁ e”" sinlv +ale'J sinv -bOeZb(u sin2v +v cos2v)
7&? -bleu(u sinv +\v cosVv) -\bz =0, {18)
;\’
[}
s . PAS u .
553 e4 cos+. +a,e " c052v+a2—boe4 (2u cosdv -2v sindv)
BACN
2v ,
-b,e (2u cos2v =2v 51n2\)-2pb2 =0 ,
3 ]
"Hé‘ 5 2 ,
5 e** sini. va,e®¥ sin2v -be®t(2u sindv +2v cosdv)
47A =
Y -bleZL(ZL sin2v +2v cos2v)-2vb2 = 0.
5- v -
v
plas The svstem was solved by REDUCE [9]. The expressions for the
1298
.0 o . .
R coefficients are complicated but REDUCE produces an output in the
{“' form oI Fortran statements that can be incorporated in a computer
10
3 % program £or numerical experiments with such a method.
w
2.3 Minimas Methods '

-

In this section we discuss minimax methods, i.e., methods

obtained by satisfying conditions (9). These conditions can be

T R
R %

written in terms of a., b, as follows:
x A

K Sl T
A S

_y (3 -
a;e(k S cos(k—i)v(])

(k- w3V ()

LV

sin(k=:) 340 D eosx-1) 3y, (19)

XX
P
N
]
o}
0

j=1,2,...,9 ,

.
ML
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(3)

k .
) age(k-z)“ sin(k-i)v(J)
2=0
k _oyL () . . . .
: = Tpe® T W eogk-0)v I 4y D gin k-)v O3, (20)
£=0
j=1,2,...,9 ,
;l‘.
h . . . .
‘$f where p(J) = h:(J) ' v(J) = hw(J) .
e
¢
iy o (3) . L .
Ol ih} are the zeros of the function ¢ (ih') such that it has
Y a small maximum norm in the rectangle wy < w < wy, vp < v < ..
s - - - -
%*C To obtain the best approximation in this case is certainly
ey :
o not easy; but we will assume that one can write Q(ih\(J))
'l' é(y(J),w(J)) as a product of 2 one variable functions. Thus
1 b i i
'§;: w(J) and w3 can be taken as Chebyshev's points on the corres-
o ponding interval, i.e.
P
MY 3y _ 1 , 1., . 2i-1 _
*;' - = 5('L +“J) + _2-('&1.1 VE)COS 29 T
B\
-". (21'
- (3) 1 1 25-1
s el - ) -
iy w = z(w +w ) + 2(wu wz)cos 3G ,
o
)
X j=1,2,...,0
2
.
gfb For this choice of points, one can evaluate the coefficients
A
.
244 a,, b, by solving
77,'( X £
At
i}d ‘ :(0)y =0,
Ao (22)
s . .
16E .
't:’ . f’('%(J)rw(])) =0, J = 1,2,...,9 .
)
s
é% We call such methods product minimax (PMZ).
Rt
i,
a’:\;t"].

10

=t A 1 H ¥ ik \ A Fy 3 Y t . ] ; - ' ' . . .
R A R K it G0 ,s,q!xa‘.ho,i‘ogl,,t.'?,c‘Q.a.'A,r,g,th._ '.u',. nh ysf.ksj‘s‘h ,:.g,.. '.o_.,‘.en. .-.‘,"A.a,'.sv" Pttt s i :‘..gh.! 1) ‘! 2
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é; The number of free parameters for implicit methods 2k+1l and
?é the number of equations is 2q+l, thus, the trigonometric order
‘f, g is equal to the step number k. '
o -
g% k =1 Implicit ‘
tx In this case
b o
! = =
i A
o w) - %(wg +w,,) (23)
By
?::", ag = 1l = -a,
?g and the system of equations can be solved for bo, bl' This
;;. yields the coefficients given by (12) where
o
%? u = -py (D) , Vv = hw (1), (24)
:34
W Thus, the product minimax method would suggest using the center
§§§ of the rectangle [pg,ﬁu]x[wﬁ,wu] as AO. To obtain a product
3? minimax method of trigonometric order 2, one has to solve a
:i’ system of 5 equations similar to equation (18) with the unknowns
§7 byr by by, a;, a,. The difference is that in the last 2 equa-
§$‘ tions one should replace 2y by p(Z) and 2v bv v(z). In the
éﬁ second'and third equations of (18), the pu, v, should be replaced
g? by u(l), v(l) respectively. The resulting system can be solved .
E{;::; by MACSYMA [4] or REDUCE [9].
ﬁﬁ In the next section we implement two methods of trigonometric -
‘ﬁ; order 1 and 2 and see how the product minimax methods compare
“: with fitting methods.

11
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3. Numerical Example

Both systems (18) and (19)-(21) were solved by REDUCE which
produced a FORTRAN subroutine for the evaluation of the coeffi-
cients. This subroutine is called only once during the intecration.

The methods were compared for the solution of the initial

value problem

z - % i(l +i)z = 0 , 0 <t <4,
(25)

z(0) =1

whose exact solution
i§(1+i)t

z(t) = e ’ (26)
thus

o= oL+ p= - = =5 (27

A= 3 +1i) , yu = - > w = 5 - 7)

In order to avoid complex arithmetic, we rewrite the differential
equation as a system of equations for the real and imaginary

part of z = u + iv.

{1+-';'-(u+v) -0,
0 <t < 4
v-;—‘(u -v) =0, (28)
u(0) =1 ,
v(0) = 0 .

12
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R

The system is solved by fitting methods of trigonometric order
1l and 2 with h = .01 and various values of ¥ and w. In Table
1l we list the Euclidean norm of the error at t = 4. It is ’

clear that the method is not sensitive to perturbations in the

values of ¢ and w.

error
Ay Lw first order second order
0 0 .3678(-12) .4433(-12)
4] .1 .4482 (~-7) .3508(~11)
.1 0] .4346(-7) .2544(~11)
! .1 1 .6342(-7) .4421(~11)
|
! 0 2 .9241(-7) .8126(~-11)
‘ .2 0 .8706(-7) .5095(~11)
Table 1

Using the product minimax methods of trigonometric order
l and 2 with h = .01 and various squares centered at y = - ©/2,
w = n/2, the error is much laraer but again is insensitive
to small perturbations in the length of the sides of the
squares. In Table 2 we list the Euclidean norm of the error

at t = 4.

13
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S 'v.e‘“‘ln‘_"'i "\‘a.“‘_!

b‘}q\’ 'n‘. 0y

error

length of side first order second order

.3678(-12) .1469(-6)
.3678(-12) .2348(-5)
.3678(-12) .1186(-4)

.3678(-12) .3728(-4)

.3678(-12) .9001(-4)

Table 2

Note that the perturbations in the product minimax methods are
larger than those allowed in the fitting methods. It is
possible that the larger errors in the product minimax methods
are due to the assumption that ¢ can be written as a product

of 2 one variable functions. Also note that for the first

order method, one always gets a good result since PM2 always

uses the center of the square.
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APPENDIX

we show that the shallow water equations with

topography have a scolution of the form exx, where A 1s complex.

This system of equations consists of three equations with

three forecast variables u, v and ¢. The equations are:

where ¢ =
surface),

o time),

3u Ju Ju 9¢

sErU T Vay Tt o0 (a.1)
av v av 95 _
E+u§§+vb—lf-+fu+;—§(»—0, (A.2)
aé a -t ,?_ Ot =

= gzlu(» QB)] + by[V(w »B)] =0, {(A.3)

gh is the geopotential height (h = height of free
N is the bottom topography (assumed to be independent

u, v are the components of the wind velocityv in the

x, v direction, respectively, and f is the Coriolis parameter.

Linearizing the eguations by letting

u=U+u', v=V+v' = 9+ 4!

’ hd ’

where U, V are the constant mean flow and 7 is independent of

time. Assuming that U, V are related to ¢ via the geostrophic

relations

one obtains the linear system (after dropping the primes) :

- - 9% = L3¢ .4
U= f oy ' v f o9x (A.4)
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vl _fvs+28_o, (A.5)
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Viay ¥ ox 3y 3%
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, 5¢ 3¢
aluy) | 3lvy) _ B+v 2, (A.7) -

-
I
+

90
+U8_x

i where y = ¢ - ¢B' v
: If the flow is assumed to be along the topography as in
ﬁ: [15], then the right hand side of (A.7) is zero. In such a

case, one can write the solution in the form d

51. - i(sx +Y\Y -C't)
0 u = ue

. s
_ Voe1(“_x +nv -ct) , (A.8) 1

W o= e ei(ix +ny -ct) , v
."9 (o) N

where

2
Ty
It
Ao
t
"
Lo

-

RN (A.9)

\
s In order for (A.8) to be a solution for (A.5)-(A.7), one must

Ay A 2 AR A A

) have

A A= -0 + £U + nV (A.10)

satisfying

oS

m: 18
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Q

iIA((i02 - inliny + U1 - EL-iME - if(iny g—;)]

+ (igy + g—;)(-inf + 5)M) =0 . (A.11)

The real and imaginary parts of

~
]

-0c + uyU + vv ,

r
(A.12)
Ai = =20 - 6V ,
satisfy the following system of equations (after dropping
nonlinear terms in )
2 L2 2 3Y 2y 3y - O
1 - s T [ QI - Sl - 5L
(A.13)
“ 3-{ _ 2 - :2 _
)r( % 0 &y) /l[f +y (2% +n%)] = 0 .
In general, * is complex and, thus, the shallow water eguations

have a solution in the class of problems to be discussed here.
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